Location:
Literature Mining
> Literature Detail
Title |
Mass spectral characterization of fatty acid amides from alfalfa trichomes and their deterrence against the potato leafhopper. |
Author |
Ranger CM, Winter RE, Rottinghaus GE, Backus EA, Johnson DW. |
Issue |
Phytochemistry. 2005 Mar;66(5):529-41. |
Abstract |
A homologous series of N-(3-methylbutyl)amides of normal saturated C14, C15, C16, C17 and C18 fatty acids were identified as major components of glandular trichome extracts from Medicago sativa G98A, an alfalfa genotype resistant to the potato leafhopper, Empoasca fabae. A second homologous series of N-(2-methylpropyl)amides of C14 through C18 normal fatty acids were minor components. Saturated free fatty acids C12, C13, C14, C15, C16, C17 and C18 were present in trace amounts, as was the N-(3-methylbutyl)amide of linoleic acid (C18:2). N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids, along with the N-(3-methylbutyl)amide of linoleic acid, were synthesized and bioassayed for leafhopper deterrence by applying the compounds to the surface of a sachet containing an artificial diet. Leafhoppers were then offered a two-way choice between diet surfaces treated with the synthetic amides or an untreated control. N-(3-methylbutyl)amides and N-(2-methylpropyl)amides of C14 through C18 fatty acids did not deter leafhopper settling in a dose-dependent fashion. In contrast, when tested singly, N-(3-methylbutyl)amide of linoleic acid exhibited dose-dependent deterrence against leafhopper settling. Fatty acid amides localized in alfalfa glandular trichomes likely contribute to leafhopper resistance.
|
Link |
15721945 |
|